Асоціація
Українсько-Китайського
співробітництва
  • ОГЛЯДАЧ / АНАЛІТИКА

    Прогрес у сфері штучного інтелекту: діагностування хвороб і розуміння мови

    2019-07-16

    Фахівці у сфері штучного інтелекту склали глобальний звіт про останні досягнення в розвитку області.

    Розробка і розвиток штучного інтелекту (ШІ) є однією з найбільш швидкозростаючих і прогресивних галузей сучасних технологій. Для того, щоб нічого не упустити, необхідно не тільки пильно стежити за розвитком галузі, але й аналізувати і порівнювати за рядом параметрів. Саме це і зробили засновник Air Street Capital і RAAIS Натан Бенайч і ШІ-інвестор і запрошений професор Університетського коледжу Лондона Ян Хогарт, повідомляє Zdnet.

    “Ми вважаємо, що існує зростаюча потреба в доступній, але докладній інформації про стан ШІ за кількома напрямами (дослідження, індустрія, таланти, політика і Китай). Мета нашого звіту – вести інформовану розмову про розвиток ШІ та його значення для майбутнього”, – поділився Бенайч. Важливо відзначити, що експерти виділяють розвиток ШІ у Китаї в окрему галузь і розглядають його окремо.

    Навчання ШІ за домогою ігор

    Підвищення здатності до навчання ШІ привертає увагу експертів з усього світу впродовж кількох останніх років. При цьому програми навчаються за принципом “навчання з підкріпленням”, тобто, вони цілеспрямовано вивчають середовище за допомогою методу проб і помилок і отримують нагороди за досягнення певних результатів. Одним з досягнень в цій області стало навчання ШІ грати в ігри і перемагати в них професіоналів.

    Навчання через ігри дозволяє ШІ навчатися, як діти, застосовуючи різні стратегії і складні навички поведінки в середовищі з низьким ступенем ризику. Це, наприклад, дозволяє дослідникам наділити роботів контрольними навиками в середовищі, більш стійкому, ніж в реальному світі.

    Наприклад, OpenAI використовував комп’ютерну симуляцію для навчання робота поєднувати об’єкти фізичного світу з вражаючою точністю. За допомогою комп’ютерного зору робот навчився передбачати форму об’єкта, а потім зміг прораховувати наступні дії, грунтуючись на положенні і конфігурації предмета.

    “Дані, які генеруються у віртуальному середовищі, частіше дешевші і більш доступні, що створює грандіозний простір для експериментів. Більш того, ігрове поле можна зробити більш або менш складним, залежно від мети експерименту. Разом з тим, комп’ютерні симуляції не завжди точно імітують реальний світ з усіма його нюансами. Це означає, що вони – відмінний початок, але не мета”, – підкреслюють автори звіту.

    Обробка природної мови і розуміння загальних значеннь

    На думку експертів, минулий рік став проривом в області обробки природної мови. Розробки Google, Microsoft і деяких інших компаній показали, що заздалегідь навчені мовні моделі можуть істотно поліпшити продуктивність за різними напрямками розвитку цієї галузі.

    Навчання комп’ютерного зору стало можливо завдяки функціонуванню ImageNet – гігантської бази даних, яка містить більше 20 тисяч категорій. Наприклад, такі категорії як “повітряна куля” і “полуниця” містять кілька сотень зображень – анотацій. З 2010 року проект ImageNet проводить конкурс, в якому програми змагаються у більш точному визначенні і класифікації зображень і сцен.

    За останній рік було зроблено кілька проривів у мовних моделях, які навчалися на великих масивах текстових даних. У цьому випадку ШІ навчався на основі текстів з інтернету. Автори дослідження наводять у приклад конкурс GLUE, який є єдиним еталоном для системи оцінювання обробки природної мови за такими параметрами, як логіка, розуміння здорового глузду і лексичної семантики.

    Для того, щоб продемонструвати, наскільки швидко розвивається ШІ, автори зазначають, що йому знадобилося всього 13 місяців на те, щоб дістатися з 69 до 88 балів, набраних у ході тестування. Середній показник для людини становить 87 балів.

    Були здійснені прориви у сфері розуміння загального сенсу. Так, дослідники з Університету Нью-Йорка продемонстрували, що, ґрунтуючись на загальних даних, нейронні мережі можуть міркувати про події та предмети, яких вони раніше не бачили.

    Досягнення ШІ у медицині

    Серед досягнень ШІ у цій галузі можна виділити такі, які колись здавалися науковою фантастикою: “читання думок” за допомогою розшифровки мозкової активності і відновлення контролю над паралізованими кінцівками.

    Крім того, нейромережі досягли успіхів у діагностиці та лікуванні хвороб. Наприклад, ШІ може більш ефективно, ніж лікарі, діагностувати хвороби очей і серця.

    Подальші шляхи розвитку

    Одним з можливих шляхів розвитку ШІ в подальшому може стати поєднання глибокого навчання і знання предметної області. “Особливо, коли метою ШІ є вирішення реальної проблеми, а не створення узагальненого агента, який вирішує проблему “сферичного коня у вакуумі”, – зазначив Бенайч.

    Крім того, він зазначив, що необхідно розширювати бази даних, які допоможуть ШІ вирішувати складні завдання із залученням здорового глузду. Однією з таких баз є Cyc. Прикладами знань у цій базі даних є “Кожне дерево є рослиною” і “Рослини смертні”. Якщо запитати у ШІ ” чи вмирають чи дерева?”, він зробить логічний висновок на підставі наявної інформації.

    Разом з тим, Бенайч вважає, що досягти успіхів у цій області тільки за допомогою текстів не можна.

     

    “Дзеркало тижня”

    Напишіть відгук

    Your email address will not be published. Required fields are marked *